1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
| """ Created on Thu Apr 8 12:28:01 2021
@author: User """ from time import time import logging import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.datasets import fetch_lfw_people from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.decomposition import PCA from sklearn.svm import SVC
lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4) n_samples, h, w = lfw_people.images.shape
x = lfw_people.data n_features = x.shape[1]
y = lfw_people.target target_names = lfw_people.target_names n_classes = target_names.shape[0]
print("Total dataset size:") print("n_samples: %d" % n_samples) print("n_features: %d" % n_features) print("n_classes: %d" % n_classes)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=42)
n_components = 150 print("Extracting the top %d eigenfaces from %d faces" % (n_components, x_train.shape[0])) t0 = time() pca = PCA(n_components=n_components, svd_solver='randomized', whiten=True).fit(x_train) print("done in %0.3fs" % (time() - t0))
eigenfaces = pca.components_.reshape((n_components, h, w))
print("Projecting the input data on the eigenfaces orthonormal basis") t0 = time() x_train_pca = pca.transform(x_train) x_test_pca = pca.transform(x_test) print("done in %0.3fs" % (time() - t0))
print("Fitting the classifier to the training set") t0 = time()
param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5], 'gamma': [0.01, 0.05, 0.01, 0.05, 0.01, 0.1], } clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid) fit = clf.fit(x_train_pca, y_train) print("done in %0.3fs" % (time() - t0)) print("Best estimator found by grid search:") print(clf.best_estimator_)
print("Predicting people's names on the test set") t0 = time() y_pred = clf.predict(x_test_pca) print("done in %0.3fs" % (time() - t0))
print(classification_report(y_test, y_pred, target_names=target_names))
|